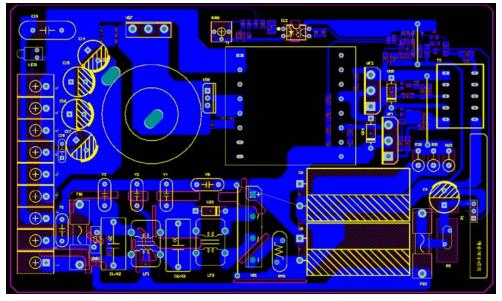


实训项目五 NCP1252 控制的双管正激恒压输出电路

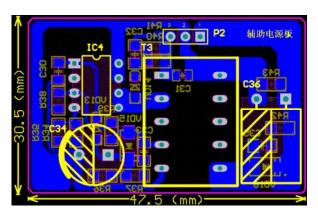
a)

b.

图 NCP1252控制的双管正激电路


a) NCP1252 控制的双管正激电路 b) 辅助电源

电路预定技术指标及参数


名称	描述	名称	描述
Vinmin=200VAC	最低交流输入电压	Io=20A	输出电流
Vinmax=264VAC	最高交流输入电压	Po=480W	标称输出功率
Vout=24VDC	正常输出电压	η=0.92	典型效率@220VAC
Vvd4=0.75VDC	输出二极管压降	$f_s=110KHz$	开关频率
Vcc=12VDC	芯片IC1工作电压	$D_{max}=0.45$	最大占空比

PCB 板及 3D 示意图

 $_{a}) \\$

b)

图 PCB 布局

a) NCP1252 控制的双管正激电路 b) 辅助电源

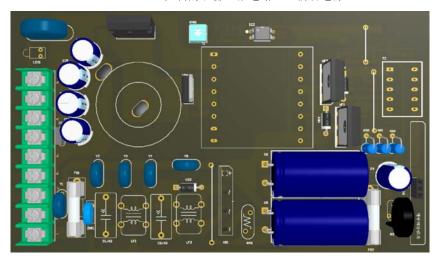


图 电路板的 3D 示意图

调试电路:

(1) IC3 (AZ431L) 和 IC2 (PC123) 的调试

在输出端,即+24V和 GND1 之间加 24±0.2V;调节 SVR1,使 IC3(AZ431L)引脚 3 的电压为 2.5±0.05V;测量 IC2(PC123)引脚 2 的电压为 2±0.1V,引脚 1 的电压为 3.2±0.1V,把万用表调到二极管档位,测量 C_{28} 两端,会发出响声。若上述测量结果不在范围之类,检查 AZ431、光耦和电阻值是否正常。对于光耦 PC123 而言,在引脚 1 和引脚 2 之间加 1.2±0.1V,用万用表(档位调到蜂鸣档)测量 C_{28} 两端,会发出响声,否则,光耦 PC123 坏了。

(2) IC1 (NCP12522)、IC2 (PC123) 和 IC3 (AZ431L) 的联合调试

先去掉 R_{14} ,IC1(NCP1252)外接 V_{CC} ,即在 V_{CC} _12V 和 GND 之间加 $12\pm0.5V$; +24V 和 GND1 之间加 $24\pm0.2V$; 输入端(L、N 之间)加 200VAC。测量 IC1 引脚 1 的电压为 $6\pm0.5V$,引脚 6 输出 PWM 波,如图 4-25 所示;若把输出电压降到 20V 或以下,测量 IC1 引脚 1 的电压,小于 1V。

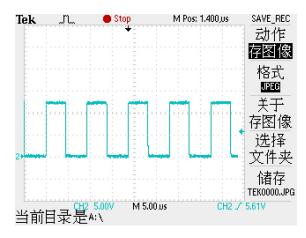


图 引脚 6 (DRV) 输出 PWM 波形

(3) VF₁和 VF₂驱动电路的调试

在上述第二步的基础上,引脚 6 输出 PWM 波, G_1 、 S_1 和 G_2 、 S_2 间的波形如下图所示。 由图 4-26 可以看出,MOS 管 VF₁和 VF₂同时导通和关断,保证电路正常工作。

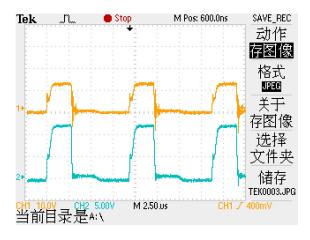


图 驱动波形